3.648 \(\int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=136 \[ -\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{\sqrt {c} \sqrt {a+c x^2} \sqrt {f+g x}} \]

[Out]

-2*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)
*(c*x^2/a+1)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)/c^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {719, 419} \[ -\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{\sqrt {c} \sqrt {a+c x^2} \sqrt {f+g x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(-2*Sqrt[-a]*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 -
(Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(Sqrt[c]*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx &=\frac {\left (2 a \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}}\\ &=-\frac {2 \sqrt {-a} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{\sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.21, size = 186, normalized size = 1.37 \[ \frac {2 i (f+g x) \sqrt {\frac {g \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{f+g x}} \sqrt {-\frac {-g x+\frac {i \sqrt {a} g}{\sqrt {c}}}{f+g x}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )}{g \sqrt {a+c x^2} \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

((2*I)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x
)*EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f +
I*Sqrt[a]*g)])/(g*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F]  time = 1.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + a} \sqrt {g x + f}}{c g x^{3} + c f x^{2} + a g x + a f}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(g*x + f)/(c*g*x^3 + c*f*x^2 + a*g*x + a*f), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} \sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 200, normalized size = 1.47 \[ \frac {2 \left (c f -\sqrt {-a c}\, g \right ) \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{-c f +\sqrt {-a c}\, g}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{c f +\sqrt {-a c}\, g}}\, \sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}\, \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}\, \EllipticF \left (\sqrt {-\frac {\left (g x +f \right ) c}{-c f +\sqrt {-a c}\, g}}, \sqrt {-\frac {-c f +\sqrt {-a c}\, g}{c f +\sqrt {-a c}\, g}}\right )}{\left (c g \,x^{3}+c f \,x^{2}+a g x +a f \right ) c g} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(c*f-(-a*c)^(1/2)*g)*EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^
(1/2)*g))^(1/2))*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*
g)^(1/2)*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g/c/(c*g*x^3+c*f*x^2+a*g*x+a*f
)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} \sqrt {g x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {f+g\,x}\,\sqrt {c\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)),x)

[Out]

int(1/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + c x^{2}} \sqrt {f + g x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*sqrt(f + g*x)), x)

________________________________________________________________________________________